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A multigrid accelerated time-accurate inviscid compressible
�uid �ow solution algorithm employing mesh movement

and local remeshing
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Civil & Computational Engineering Centre; University of Wales Swansea, Swansea SA2 8PP; Wales; U.K.

SUMMARY

An implicit scheme for the time accurate solution of three dimensional compressible �uid �ow problems
with moving boundaries on unstructured tetrahedral meshes is described. The numerical scheme is
nominally second order accurate in both space and time and satis�es a geometric conservation law. For
improved computational performance, the implicit equation system is solved by explicit iteration with
multigrid acceleration. For the multigrid implementation, the coarse meshes are automatically generated
by an agglomeration technique. The change in the solution domain geometry with time is handled by
moving the mesh using a spring analogy scheme, with local remeshing performed in regions of reduced
mesh quality. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: 3D inviscid �ow; time accurate; agglomerated multigrid; unstructured mesh; mesh
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1. INTRODUCTION

There are many examples of practical problems that require the modelling of compressible
time dependent �ow with moving boundaries. In the aerospace industry, such applications
include the analysis of �utter, store release, bu�eting and the deployment of control surfaces. In
this paper, an unstructured tetrahedral mesh method is proposed for the solution of this class of
problems. This provides a convenient framework for handling the complex geometrical shapes
that are frequently encountered, with the spatial discretization of the governing equations
accomplished by employing a cell vertex �nite volume method.
The resulting equations have often been advanced in time by employing explicit schemes,

but this usually requires many time steps and long computational times. Here, the requirement
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for a large number of time steps is not normally a result of the demands for time accuracy, but
is due to the stringent stability constraints associated with explicit schemes. These constraints
arise because small elements are usually unavoidable if the geometry is to be accurately
represented and these small elements dictate the time step size for the entire problem. By
splitting the computational domain into several sub-domains, according to the size of the
allowable local time step, more e�cient explicit time accurate schemes [1–3] have been
developed. Although these approaches work well for small values of the Strouhal number,
they are still restricted by the stability limit of the scheme for slower movement modes.
In this paper, the alternative approach of employing an implicit formulation is adopted.

The size of the allowable physical time step is then independent of the spatial discretization
which means that the time step used can be selected by considering accuracy criteria only.
With such formulations it is imperative, for realistic three dimensional simulations, to use
an implementation that avoids the requirement for working with large matrices and, in this
context, equation solution by explicit iteration with multigrid acceleration is attractive. For
an unstructured tetrahedral mesh, research has already demonstrated how the coarse meshes
required for multigrid can be automatically generated [4–6]. The multigrid scheme described in
this paper achieves this by using an agglomeration approach [4] in which the control volumes
of the meshes are merged together through an edge based method. In this way, good quality
nested meshes are automatically created at only a fraction of the time and e�ort required for
manual coarse mesh generation.
There are a number of di�erent approaches that can be employed for handling the meshing

issues that arise in the simulation of problems involving moving geometries. If the use of
overlapping meshes of the Chimera type [7, 8] is not considered, small changes in the geom-
etry can be approximated by keeping the mesh �xed and perturbing the boundary conditions
[9]. This approach provides acceptable results for aerodynamic simulations involving small
boundary displacements but, for larger displacements, mesh movement or remeshing tech-
niques must be used. Mesh movement [10–12] adapts the mesh to the deformations imposed
by the moving boundary, normally maintaining the mesh connectivity so that issues such as
geometric conservation are simpli�ed. An alternative is to apply mesh quality enhancement
techniques which modify the mesh structure [13]. The drawback with mesh movement ap-
proaches is that meshes of bad quality may result if large movement is involved and, in such
cases, the use of remeshing becomes necessary. The remeshing approach [14] is expensive,
as it requires the involvement of a mesh generation procedure at every time step and intro-
duces interpolation errors between time steps. The alternative is the method adopted here,
which involves a combination of mesh movement and local remeshing [3, 15]. The mesh is
�rst moved, retaining the connectivity, as dictated by the geometry de�ection. A mesh quality
indicator is applied to decide if there are regions of bad mesh quality present. Such regions
are removed, creating holes which are then remeshed using an unstructured mesh genera-
tor. The solution of the mesh at the previous time level is interpolated to the new mesh
and the solution is advanced on this mesh. This approach has the advantage of reducing the
amount of remeshing required, thus minimizing the regions where interpolation errors are
introduced.
It will be demonstrated that the combined procedure is currently feasible, in terms of both

computational costs and memory requirements. The practical examples which are included
show that the method is robust and applicable to geometries of a complication level experi-
enced in industry.
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2. PROBLEM DESCRIPTION

The time dependent compressible Euler equations can be expressed in integral form, on a
three dimensional Cartesian domain �(t) ⊂ R3 with closed surface @�(t), as

d
dt

∫
�(t)
U dx+

∫
@�(t)

(F j − vjU)nj dx=0 j=1; 2; 3 (1)

where the summation convention is employed,

U=



%
%u1
%u2
%u3
%�


 ; F j=




%uj
%u1uj + p�1j
%u2uj + p�2j
%u3uj + p�3j
uj(%�+ p)


 (2)

and v=(v1; v2; v3) is the velocity of the surface @�(t). Here % denotes the �uid density, uj
the jth component of the �uid velocity vector, p the pressure, � the speci�c total energy and
nj the jth component of the outward unit normal vector to @�. The system is closed by the
addition of the calorically perfect gas equations of state

p= %RT; �= cvT + 1
2 ujuj (3)

where R is the real gas constant, T is the total temperature, cv is the speci�c heat at constant
volume, �= cp=cv=1:4 and cp is the speci�c heat at constant pressure. At any solid bound-
ary, the relative normal component of the velocity must vanish and this requirement can be
expressed in the form

ujnwj = u
w
j n

w
j (4)

where uwj and n
w
j are the components of the wall velocity and the wall unit normal vector,

respectively.
The characteristic parameters for compressible time dependent inviscid �ow are the Mach

number and the Strouhal number, de�ned by the expressions

M∞=
u∞
c∞
; St∞=

u∞tc
‘

(5)

In these equations, u∞ and c∞ denote the magnitude of the free stream velocity and speed
of sound respectively, tc is a characteristic time scale of the motion and ‘ is a characteristic
length scale. For cyclic motion of wings, tc is taken as the period of one cycle and the mean
geometric chord is used as the characteristic length scale. For problems in which gravitational
e�ects are important, an additional characteristic parameter is the Froude number

Fr∞=
u2∞
‘g

(6)

where g is the gravitational acceleration.
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3. DISCRETIZATION PROCEDURE

The computational domain is represented by an unstructured tetrahedral mesh, generated by
a Delaunay method [16]. The interest in this paper is the simulation of �ows for which the
geometry under consideration is moving with time. This means that the generated mesh will
need to change to allow for the alteration in the shape of the computational domain. This can
be achieved by remeshing the entire computational domain at each time step. However, this is
not only computationally expensive but may also result in reduced accuracy, due to the e�ects
of interpolation errors. In addition, certain desirable features, such as geometric conservation,
are di�cult to ensure if the mesh structure changes. It is, therefore, good practice to avoid
remeshing whenever possible and, instead, to strive to retain the mesh connectivity.

3.1. Mesh movement

An obvious method to account for boundary movement, while retaining the mesh connectivity,
is to use mesh movement. For external �ows, this is usually achieved by �xing the mesh on
the far �eld boundary, while moving the mesh nodes on the geometry. The interior mesh
nodes are then moved accordingly to achieve the desired mesh quality. A number of di�erent
mesh movement approaches have been investigated in the literature, but the approach used
here assumes that the edges of the mesh behave like springs connecting the nodes [3]. The
nodes on the moving geometry are moved in small increments, with the interior nodes being
moved to ensure internal equilibrium for each increment. This is accomplished by solving the
system ∑

J∈�I
kIJ (dIJ − dprevIJ )=0 (7)

where dprevIJ and dIJ are the lengths of the edge between nodes I and J before and after the
movement, respectively, and kIJ is the spring coe�cient, which is taken to be the inverse of
the edge length. Typically 50 increments are employed with this procedure. The approach is
robust and fast, usually requiring about 10–15% of the total CPU-time required to solve the
system time accurately. With this approach, it is also possible to obtain an additional level of
control over the mesh movement by varying the spring constants of the edges.

3.2. Local remeshing

For certain simulations, it is impossible to avoid remeshing if the necessary mesh quality
is to be maintained. An example would be store separation, where the geometry splits into
several parts that move relative to each other. For such a problem, as the distance between
two bodies increases, the mesh obtained by mesh movement is likely to become too coarse
in the direction of movement and the resulting stretched mesh will adversely e�ect the solu-
tion accuracy. However, the regions for which mesh movement is inappropriate are usually
relatively small and this is utilised by applying local remeshing only. The regions that will
be remeshed are determined by using a mesh quality indicator which is taken to be the ratio
of the volume of an element at the current time level and the element volume in the original
mesh. Based on this indicator, elements are removed, creating one or more holes in the mesh.
Each of these holes is meshed in the normal manner by using a Delaunay scheme, with the
triangulation of the hole surface providing the initial surface triangulation [3] for each hole.
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Figure 1. Illustration of that portion of the dual mesh surrounding node I that is
contained inside a tetrahedral element.

In certain circumstances, it may not be possible to recover the surface triangulation of the
hole and, in this case, another layer of elements is removed from the original mesh and the
process is repeated. The unknown �eld is transferred from the previous mesh level by linear
interpolation.

3.3. The �nite volume method

The governing equations are discretized by using a �nite volume method, in which the un-
knowns are located at the vertices of the mesh and the numerical integration is performed
over dual mesh interfaces. The dual mesh is constructed by connecting edge midpoints, ele-
ment centroids and face centroids in such a way that only one node is contained within each
control volume. Each edge of the grid is associated with a surface segment of the dual mesh
interface between the nodes connected to the edge. This surface is de�ned using triangular
facets, where each facet is connected to the midpoint of the edge, a neighbouring element
centroid and the centroid of an element face connected to the edge [17]. This is illustrated, for
a tetrahedral element, in Figure 1. In this �gure, the midpoint of the edge connecting nodes
I and J is denoted by xIJm , the centroid of the face with vertices I; J and K is xIJKs and the
element centroid is designated by xc. The bold lines on the dual mesh illustrate the boundaries
between the edges with which the dual mesh segment is associated and, with this dual mesh
de�nition, the control volume can be thought of as being made up of a set of tetrahedra. The
dual mesh interface inside the computational domain surrounding node I is denoted by �I ,
while the portion of the dual that is situated on the computational boundary is denoted by
�BI . The facets which de�ne the control volume interface surrounding node I are denoted by
�KI , so that �I ∪ �BI =

⋃
K �

K
I . The subset of �I associated with the edge connecting nodes I
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and J , i.e. the facets touching the edge, is denoted by �IJ . The subset of �BI between nodes
I and J is denoted by �BIJ .
To enable the numerical integration of the term involving the inviscid �ux vectors F j in

Equation (1) over the control volume interfaces, a set of coe�cients is calculated for each
edge using the dual mesh segment associated with the edge. For an internal edge, these
coe�cients are given by

C j
IJ =

∑
K∈�IJ

A�KI n
j
�KI

(8)

where A�KI is the area of facet �KI and nj�KI
is the outward normal to the facet from the

viewpoint of node I . In a similar manner, to evaluate the contributions from the facets forming
the computational boundary, the coe�cients

Dj
IJ =

∑
K∈�BIJ

A�KI n
j
�KI

(9)

are evaluated. In this case, nj�KI
denotes the normal to the facet in the direction out of the

computational domain. When performing the integration, the contribution from the dual mesh
segment associated with an edge, is determined by assuming the integrand to be constant over
the segment and equal to its approximated value at the midpoint of the edge, i.e. a form of
midpoint quadrature is employed. For a general node I , this integral is then evaluated as

∫
@�I
F jnj dx ≈ ∑

J∈�I

C j
IJ

2
(F jI + F

j
J ) +

∑
J∈�BI

D j
IJF

j
I (10)

where �I denotes the set of nodes connected to node I by an edge and �BI denotes the set of
nodes connected to node I by an edge on the computational boundary. The second term on
the right hand side thus only contributes if I is a boundary node. Boundary terms are treated,
in the classical �nite volume manner, by using a local midpoint rule.
It is proposed to treat the integral in Equation (1) involving the velocity of the control

volume interface in a similar fashion. In this case, additional numerical edge coe�cients
SIJ ; TIJ , are introduced such that∫

@�I
vjUnj dx ≈ ∑

J∈�I

SIJ
2
(UI +UJ ) +

∑
J∈�BI

TIJUI (11)

The full details of the manner in which these additional edge coe�cients are evaluated in this
work will be described shortly.

3.4. Time discretization

At a general node I , the time derivative term in Equation (1) may be evaluated as

d
dt

∫
�I (tn)

U dx
∣∣∣∣
t=tn

≈ 1
	t
(VnI U

n
I − Vn−1I Un−1I ) (12)
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if a �rst order backward Euler approximation is adopted or as

d
dt

∫
�I (tn)

U dx
∣∣∣∣
t=tn

≈ 1
	t

(
3
2
VnI U

n
I − 2Vn−1I Un−1I +

1
2
Vn−2I Un−2I

)
(13)

when a three level second order approximation is employed. In these expressions, the super-
script n refers to an evaluation at time level t= tn, the time levels are taken to be equally
spaced with a time step 	t and VI is the volume of �I .

3.5. Geometric conservation

An important property of Equation (1) is that of geometric conservation, which implies that,
if the unknown �eld is constant, the solution should not change in time. Mathematically, this
implies that

d
dt

∫
�(t)
dx −

∫
@�
vjnj dx=0 (14)

and it is desirable that the discretized numerical scheme should also exhibit this property
[11, 18, 19]. The task of determining the edge coe�cients in Equation (11) so that the numer-
ical scheme is geometrically conservative is not trivial and has been treated by several authors
[11, 12, 18, 19]. Here the approach of Nkonga and Guillard [12] is adopted and extended to
dual meshes which are constructed of assemblies of triangular facets. The key point is the
assumption that each node in the mesh moves in a linear fashion between time levels tn
and tn+1. Under this assumption, the movement of a triangular facet can be easily described.
An illustration of the dual mesh facet �KI is given in Figure 2. The points xc1; xc2 and xc3
are situated at the vertices of the facet and move linearly in space and time, from time level
tn to time level tn+1. The vertices may be element centroids, face centroids or edge midpoints
for any kind of mesh with a dual mesh consisting of planar triangular facets. It is apparent
that triangular facets of this form will remain planar under this assumption of linear node
movement. The volume swept out by the triangular facet �KI , between time levels tn and tn+1,
is illustrated in Figure 2 and may be expressed as

�V n+1; n�KI
=

∫ tn+1

tn

∫
�KI

v�
K
I
j n

�KI
j dx dt (15)

It can be shown [12, 19] that

�V n+1; n�KI
= 1

9(A
n+1
�KI
n�

K
I ; n+1
j + An�KI n

�KI ; n
j + A∗

�KI
n�

K
I ;∗
j )(rc1j + rc2j + rc3j ) (16)

where

An+1�KI
n�

K
I ; n+1 = 1

2(x
n+1
c2 − xn+1c1 )×(xn+1c3 − xn+1c1 ) (17)

An�KI n
�KI ; n = 1

2(x
n
c2 − xnc1)× (xnc3 − xnc1) (18)

A∗
�KI
n�

K
I ;∗ = 1

4(x
n+1
c2 − xn+1c1 )×(xnc3 − xnc1) + 1

4(x
n
c2 − xnc1)×(xn+1c3 − xn+1c1 ) (19)
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Figure 2. Illustration of the terminology used for the movement of a triangular
facet of the dual mesh for node I .

and

rc1 =xn+1c1 − xnc1; rc2 =xn+1c2 − xnc2; rc3 =xn+1c3 − xnc3 (20)

The local geometric conservation law

�V n+1; n�KI
=	tv j;∗�KI

n j;∗�KI
A∗
�KI

(21)

can now be applied to the facet, where vj;∗�KI
is an averaged facet velocity, A∗

�KI
is the averaged

facet area and nj;∗�KI
is the average normal between time levels tn and tn+1. The right hand

side of this equation may be recognized as the contribution of a single facet to the integral
over @� in Equation (14), multiplied by the time step. Since the dual mesh is constructed by
collections of triangular facets, it follows that the formulation of a geometrically conservative
scheme for the unstructured meshes used here may be obtained by setting

	tSn+1IJ =
∑
K∈�IJ

�V n+1; n�KI
; 	tT n+1IJ =

∑
K∈�BIJ

�V n+1; n�KI
(22)

Geometric conservation results in this case as, summing over the edges connected to a given
node I , produces

	t
∑
J∈�I

Sn+1IJ +	t
∑
J∈�I

T n+1IJ =
∑
J∈BI

[ ∑
K∈�IJ

�V n+1; n�KI
+

∑
K∈�BIJ

�V n+1; n�KI

]
=Vn+1I − VnI (23)

where the last equality is true since the control volume is closed. From this equation, it follows
that the geometric conservation law is satis�ed numerically when the backward Euler time
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discretization of Equation (12) is used. When the alternative second order time discretization
of Equation (13) is applied, a modi�ed version of the de�nition of Equation (22) has to be
adopted in order to ensure numerical geometric conservation. Here, the modi�cation

Ŝ n+1IJ = 3
2S

n+1
IJ − 1

2S
n
IJ ; T̂ n+1IJ = 3

2 T
n+1
IJ − 1

2 T
n
IJ (24)

is used, which makes the coe�cients second order in time [13]. Then, using Equation (23),
it follows that

3
2
Vn+1I − 2VnI +

1
2
Vn−1I =

∑
J∈�I

ŜnIJ +
∑
J∈�BI

T̂ nIJ (25)

which is a geometric conservation law valid for the three level time discretization. It should
be noted that these internal edge coe�cients need only be stored once for each edge as they
are anti-symmetric, i.e.

SnIJ =−SnJI (26)

This follows since the volume swept out by each facet is the same for the two control volumes
connected by an edge, but of opposite sign. There does not, however, appear to be any direct
relationship between TnIJ and T

n
JI and both of these coe�cients are calculated and stored.

The boundary condition of Equation (4) is applied by using the expression

uw; n+1I =
1
	t
(xn+1I − xnI ) (27)

for the wall velocity when the �rst order scheme is employed and

uw; n+1I =
1
	t

(
3
2
xn+1I − 2xnI +

1
2
xn−1I

)
(28)

when the second order scheme is adopted. This is consistent with the dual mesh velocity
de�nitions employed in the two time discretization approaches. For regions that have been
remeshed, the coordinates at the current time level are interpolated back to the previous time
level, thus creating a new mesh at the previous time level with the connectivity of the current
mesh. The mesh discretization is then performed in the same way as for the moved regions
of the mesh. In the results presented here, the �rst order time discretization scheme is used
if remeshing has been performed.

3.6. Arti�cial dissipation

As the resulting discretization procedure is essentially central di�erence in character, the ad-
dition of a form of stabilizing dissipation is required, if the scheme is to be practically useful.
This is achieved by a method of JST type [20], in which the third order biharmonic term

HI ≡
∑
J∈�I

HIJ =
∑
J∈�I

DIJ (GJ −GI) (29)

where

GI =
∑
K∈�I

(UK −UI) (30)
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is introduced. Here, HIJ is the arti�cial dissipation �ux and DIJ is the biharmonic dissipation
matrix which is O(h2) where h is a typical mesh spacing. The diagonal form

DIJ =mIJ �IJ I (31)

is adopted for the dissipation matrix [20], where I is the unit matrix,

mIJ = max(0; �4 − �2NIJ ) (32)

and

�IJ =
1

KI + KJ
min

(
VI
	�I

;
VJ
	�J

)
(33)

Here KI is the number of edges connected to node I and 	�I is the value of the local
time step. The biharmonic dissipation factor, �4, is a user-speci�ed parameter and is normally
selected to lie within the range [0:1; 0:2]. The biharmonic term is not capable of stabilizing
the numerical scheme close to discontinuities in the �ow and the additional harmonic term

QI =
∑
J∈�I

�2�IJNIJ (UI −UJ ) (34)

is added, where �2 is the harmonic dissipation parameter. This term is of �rst order, but only
makes a signi�cant contribution in regions of high pressure gradients, due to the incorporation
of the pressure switch

NIJ = max(|@pI |; |@pJ |) (35)

where

@pI =12
∑
K∈�I

(pK − pI)=
∑
K∈�I

(pK + pI) (36)

The harmonic dissipation parameter is usually assigned a value in the range [0:2; 0:4].

3.7. Discrete equation

When backward Euler time stepping is used, the �nal form of the discrete equation for the
time accurate simulation of inviscid �ow is

1
	t
(VnI U

n
I − Vn−1I Un−1I ) +

∑
J∈�I

C j; n
IJ

2
(F j; nI + F j; nJ ) +

∑
J∈�BI

D j; n
IJ F

j; n
I

− ∑
J∈�I

SnIJ
2
(UnI +U

n
J )−

∑
J∈�BI

T nIJU
n
I −

∑
J∈�I

Dn
IJ (H

n
I −Hn

J )

− ∑
J∈�I

�IJN nIJ (U
n
I −UnK)=0 (37)

at every node I in the computational domain. If the second order time discretization is used,
the �rst term of this equation is replaced by the right hand side of Equation (13) and SIJ ; TIJ
in the fourth and �fth terms are replaced by the expressions de�ned in Equation (24).
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4. SOLUTION PROCEDURE

At every time step, this approach results in an equation system of the form

Rf(Uf)= sf (38)

where Rf is the vector of nodal residuals and sf is a source term that is independent of Uf.
In these expressions, the subscript f refers to a quantity evaluated on the generated mesh.
For example, by treating the time derivative term in the governing equations as a source, the
scheme of equation (37) may be expressed in this form with

RI (Un) =
Vn

	t
UnI +

∑
J∈�I

C j; n
IJ

2
(F j; nI + F j; nJ ) +

∑
J∈�BI

D j; n
IJ F

j; n
I

− ∑
J∈�I

SnIJ
2
(UnI +U

n
J )−

∑
J∈�BI

T nIJ U
n
I

− ∑
J∈�I

Dn
IJ (H

n
I −Hn

J )−
∑
J∈�I

�IJN nIJ (U
n
I −UnJ ) (39)

where UI is the I th entry in Uf, RI is the I th entry in Rf and

snI =
Vn−1

	t
Un−1I (40)

is the I th entry in sf. Although the solution of this non-linear system may be accomplished in
several ways, we will propose here the use of the FAS multigrid scheme [21], as multigrid has
proved to be very e�ective for the simulation of steady inviscid compressible �ow problems.
This approach avoids the requirement for linearisation of the discrete system, eliminating the
need to store a Jacobian matrix and, thus, reducing the memory requirements signi�cantly
compared to those of many other solution schemes.

4.1. Multigrid scheme

We consider a relaxation procedure for the solution of equation (38). The method selected uses
an explicit three-stage Runge–Kutta method, with local time stepping, and coe�cients 0:6, 0:6
and 1:0. Suppose that the solution estimate following step r is denoted by Urf. An additional
relaxation step is performed, with the objective of damping high error frequencies, and this
produces the improved solution estimate U r∗

f . The objective is now to �nd the correction E
r
f

such that

Uf=U r∗
f + Erf (41)

On our generated mesh, which we term the �ne mesh, the defection for the improved guess
at cycle r is de�ned as

D r∗
f =Rf(U r∗

f )− sf (42)

By subtracting this from Equation (38), and using Equation (41), we deduce that

Rf(U r∗
f + Erf)−Rf(U r∗

f )=−D r∗
f (43)
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The �ne mesh relaxation scheme will be very e�cient at eliminating the highest frequencies,
so that the approximation of the �ne mesh error on a coarser mesh may be considered smooth.
It is, therefore, more e�cient to solve this equation on a coarse mesh and, for this purpose,
the coarse mesh variable

Urc= I
f
c U

r∗
f + Erc (44)

is introduced, where Erc is the coarse mesh representative of the low frequency error compo-
nents of the iteration. Here, Ifc is a restriction operator that maps the �ne mesh unknowns on
to the coarse mesh. The coarse mesh analogy of Equation (43) is now given by

Rc(Urc)=Rc(I
f
c U

r∗
f )− Ifc D r∗

f (45)

and, by de�ning

ŝc=Rc(Ifc U
r∗
f )− Ifc D r∗

f (46)

the coarse mesh equation may be written as

Rc(Urc)= ŝc (47)

which is of the same form as Equation (38). This means that the �ne mesh and coarse mesh
equations are similar, with the only di�erence arising in the form of the source term. This is
a major computational advantage when compared with multigrid schemes that work directly
with the error on the coarse meshes. As the majority of the computation is related to the
evaluation of R, this makes it possible to use many of the same subroutines on the coarse
mesh and the �ne mesh levels. The three stage Runge–Kutta method is again employed to
relax the coarse mesh equation (47), yielding an improved representation U r∗

c for the coarse
mesh unknowns. As this is of the same form as Equation (38), the coarse mesh equation
may itself be solved by the FAS multigrid method, thus naturally introducing as many mesh
levels as required to resolve all the frequencies in the solution. The coarse mesh error may
be approximated as

E r
∗
c = I

f
c U

r∗
f −U r∗

c (48)

and the solution on the �ne mesh is corrected according to

Ur+1f =U r∗
f + IcfE

r∗
c (49)

This correction involves a prolongation operator, Icf, that maps the coarse mesh variables on
to the �ne mesh. We have employed a linear restriction mapping, so that the value of a
variable on the coarse mesh is produced by the weighted average

UcI =
1
V cI

∑
J
UfJ V

f
J (50)

of the �ne mesh unknowns. This formula assumes nested meshes and the summation extends
over the control volumes on the �ne mesh that make up the coarse mesh control volume.
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For prolongation, again assuming nested meshes, the simple point injection scheme

UfI =U
c
J (51)

is adopted, where VJ is the coarse mesh volume that includes node I of the �ne mesh.
The approach can be thought of as converging the set of steady state equations, with the

addition of the time source, at every physical time step. In this way, there are no numerical
limitations on the size of the physical time step and it can be set to a value governed by
accuracy concerns only. The speedup achieved by using the multigrid accelerated implicit
scheme instead of simple [22], or more elaborate [23], explicit time stepping will depend
upon the Strouhal number of the �ow. Large Strouhal numbers generally favour the implicit
approach. Typically, for the Strouhal numbers appearing in many industrial applications, the
implicit approach will be well over one order of magnitude faster, for minimal additional
memory cost.

4.2. Coarse mesh generation

The nested coarse meshes required for the multigrid procedure described above are obtained by
agglomeration. Agglomeration works on the dual mesh of the �nite volume scheme, merging
control volumes in a manner designed to achieve the local coarseness ratio required [4, 24].
The approach is purely edge based and can therefore be applied on any type of mesh after
the edge based data structure has been assembled. Since no mesh generation issues are raised
in the procedure, the scheme is completely stable and fast. The agglomeration procedure
begins by selecting a seed node from a seed list. Nodes connected to the seed node by
edges that haven’t already been merged are then grouped together, creating a super node.
When this procedure has been completed for all nodes, internal edges in the super nodes
are deleted and edges bordering the same two super nodes are merged into super edges by
adding the coe�cients de�ned in Equation (8) of the merged edges. In a similar fashion, the
boundary coe�cients de�ned by Equation (9) are also added. When the agglomeration loop
is complete, super nodes that are only connected to one edge are identi�ed and merged using
this connectivity. This can occur if a super node control volume is completely surrounded by
another control volume and possibly a part of the boundary of the computational domain.

4.3. Implementation issues

The computational implementation consists of four main components. The �rst component
is mesh movement, for which a geometry �le and the surface movement information must
be prescribed. The internal nodes of the mesh are then positioned by employing the mesh
movement algorithm. The second component is remeshing, in which the local quality of the
moved mesh is investigated and remeshing is performed if required. The third component
is preprocessing, which sets up the edge based data structure, from the mesh information,
generates the coarse grids and constructs the inter grid interpolation arrays for the multigrid
procedure. The �nal component is the equation solving, in which the output from the pre-
processor is accessed and the time dependent discrete equations are solved for one physical
time step. These components are loosely coupled, employing a driving script and �le commu-
nication. Such a loose coupling will, inevitably, adversely a�ect the solution time compared
to implementations which do not require I=O communication. However, since relatively few
time steps are required for the implicit schemes, this e�ect is usually small.
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5. EXAMPLES

Three examples are included to illustrate the capability of the procedure. The initial exam-
ple is used to compare the performance of the implicit and explicit schemes for a problem
involving a simple geometry undergoing a single prescribed oscillation. The second example
involves a more complicated prescribed motion of a realistic aircraft con�guration. Both of
these simulations are undertaken without the need for remeshing. The �nal example demon-
strates the use of the remeshing capability and involves the simulation of the release of a pair
of stores from a complete aircraft con�guration.

5.1. ONERA M6 wing

The �rst example involves �ow over an ONERA M6 wing that is undergoing a prescribed
oscillation. The free stream Mach number is 0:84 and the initial angle of attack is 3:06◦. The
mesh employed consists of 264 896 tetrahedral elements. The wing oscillates in pitch, about an
axis normal to the midpoint of the root chord, with an amplitude of 5◦ and Strouhal numbers
of 1:68, 3:36, 6:72 and 13:44 are investigated. For this con�guration, these Strouhal numbers
can be considered to be at the lower end of the range of practical interest. The computations
are initiated from free stream conditions and 10 full cycles are calculated. Periodic behaviour
is found to occur after �ve cycles. Within each physical time step, the solution of the implicit
scheme is converged to three orders of magnitude and this, typically, requires of the order
of 10–30 multigrid cycles, depending upon the number of physical time steps used. Five
grid levels are employed in the multigrid procedure. The lift histories of the cyclic motion,
for various physical time step sizes, are compared with the results of an explicit scheme in
Figure 3. In this �gure, the label 1575 refers to the use of an explicit solver. It can be seen
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Figure 3. Oscillating ONERA M6 wing: plot of a segment of the lift history obtained using
di�erent numbers of time steps per cycle.
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Table I. Oscillating ONERA M6 wing: speed up of the implicit solver compared with an
explicit procedure for St=3:36.

SPC Movement time (%) Preprocessor time (%) Solver time (%) Speed up

8 17 10 73 9.2
16 14 13 73 6.4
32 12 16 72 4.3
64 12 21 67 2.8

Table II. Oscillating ONERA M6 wing: speed up of the implicit solver compared with an
explicit procedure for di�erent Strouhal numbers.

St Normed total time (%) Speed up

1.68 1.00 3.4
3.36 1.05 6.4
6.72 1.08 12.3
13.44 1.10 24.4

that good accuracy is obtained if 16 time steps are used per cycle in this case. A comparison
of the speed up of the implicit solver compared to the explicit scheme, for the case when the
Strouhal number is 3:36, is shown in Table I. In this table, SPC refers to the number of time
steps used per cycle. The percentage of the CPU time required by the various stages of the
solution procedure is also shown. It should be noted that these �gures include reading and
writing from disk. In the explicit solver, the movement and preprocessor stages were called
every 10 time steps, with only one movement used per sub step. The error associated with this
level of approximation is usually considered negligible for explicit schemes. In spite of this,
the speed up of the implicit formulation is considerable. It can also be observed that, as the
number of cycles is increased for the implicit scheme, the convergence of the solver stage is
quicker and, thus, requires a smaller percentage of the CPU time. The number of sub steps in
the grid movement algorithm was varied according to the number of physical time steps used
in the calculation, so that each full cycle of the calculation involved 800 movement sub steps.
This is more than adequate for this test case. For this problem, the speed up achieved as a
function of the Strouhal number, is illustrated in Table II. These �gures were produced using
16 steps per cycle. Provided the allowable time step stability limit is smaller than the time
step required for a desired accuracy level, the CPU time required for an explicit scheme is
directly proportional to the characteristic timescale of the calculation. For the implicit scheme,
the dependence of the CPU time of the Strouhal number is markedly smaller. It is observed
that, even for a very low Strouhal number of 1:68, signi�cant speedup is achieved with the
implicit approach. Plots of the lift polar, which is the variation of the lift coe�cient with the
phase angle, are shown in Figure 4.

5.2. B60 aircraft

In the second example, the simulation of the �ow over an oscillating B60 aircraft geometry
is considered. The free stream Mach number is 0:803 and the initial angle of attack is 2:738
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Figure 4. Oscillating ONERA M6 wing: the computed lift polars at di�erent Strouhal numbers.

Figure 5. Oscillating B60 con�guration: view of the surface mesh employed.

degrees. For this simulation, the wings and engines alone are subjected to a prescribed move-
ment. The wing movement is de�ned in a piecewise linear fashion, with a pitch amplitude of
one degree and a heave amplitude of 2% of the wing semi span at the wing midpoint and a
pitch amplitude of �ve degrees and heave of 6:5% at the wing tip. The wing root is held �xed.
The movement is sinusoidal, with a Strouhal number for all movement modes of 13:3, and
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Figure 6. Oscillating B60 con�guration: surface contours of pressure at two di�erent times.

32 physical time steps are performed for each cycle. The mesh employed consists of 775 877
tetrahedra and a view of the discretized surface is given in Figure 5. For this example, an
estimated speedup of 12:5 is achieved compared to the explicit approach. Snapshots of the
surface pressure, at two di�erent times, are given in Figure 6, while the calculated lift polar
is shown in Figure 7.
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Figure 7. Oscillating B60 con�gurations: the computed lift polar.

5.3. Store release

The �nal example involves the simulation of the simultaneous release of two stores from
a generic F16 aircraft con�guration. The geometrical de�nition of the aircraft was provided
by EADS-M, M�unchen, Germany. The stores are assumed to be completely �lled with a
substance of density 1 250 times that of the free stream air. The free stream Mach number
is 0:5, the angle of attack is zero and the Froude number is 1333. The rigid body movement
of the tanks is calculated by integrating the pressure �eld on the stores and using a second
order accurate time integration. Local remeshing is employed and each mesh consists of about
2:7 million tetrahedral elements. The resulting surface pressure distribution, at four equally
spaced time intervals, is shown in Figure 8.

6. CONCLUSION

A method for the simulation of inviscid compressible �uid �ow problems involving mov-
ing geometries has been described. The method employs a mesh movement=local remeshing
approach which is capable of accurately and robustly solving problems involving a wide
spectrum of mesh deformation. The multigrid accelerated implicit time stepping equation pro-
cedure is competitive with domain decomposed explicit schemes for low Strouhal numbers
and superior for time dependent �ows with medium and large characteristic times. Future
publications will focus on the extension of the method to time dependent turbulent �ows.
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Figure 8. Simultaneous release of two stores from a generic F16 aircraft con�guration: computed
contours of pressure at 0:29 second intervals.
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